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Abstract

Here we apply statistical multivariate data analysis techniques to obtain some insights into the complex structure-property relations in

antiferromagnetic (AFM) and ferromagnetic (FM) manganese perovskite systems, AMnO3. The 131 samples included in the present

analyses are described by 21 crystal-structure or crystal-chemical (CS/CC) parameters. Principal component analysis (PCA), carried out

separately for the AFM and FM compounds, is used to model and evaluate the various relationships among the magnetic properties and

the various CS/CC parameters. Moreover, for the AFM compounds, PLS (partial least squares projections to latent structures) analysis is

performed so as to predict the magnitude of the Néel temperature on the bases of the CS/CC parameters. Finally, so-called PLS-DA

(PLS discriminant analysis) method is employed to find out the most influential/characteristic CS/CC parameters that differentiate the

two classes of compounds from each other.

r 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years, perovskite oxides have formed one of the
focus areas in materials research as they exhibit a variety of
physical properties that have been found exciting in both
academic and technological aspects. The source of fascina-
tion is the diversity of the properties and their high
sensitivity to (crystal)chemical tuning. In other words, a
tiny change in chemical composition and/or crystal
structure may induce huge changes in physical properties.
For designing and on-demand tailoring of functional
perovskite-oxide materials, it would be important to
separately learn the effect of each chemical and structural
parameter on the target property. These parameters are,
however, often interrelated such that when examining the
e front matter r 2008 Elsevier Inc. All rights reserved.
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effect of one parameter the variations of other correlated
parameters need to be taken into account. It is here that the
techniques of chemometrics or statistical multivariate data
analysis appear to be useful.
To approach multivariate problems various projection

methods are utilized [1]. Both qualitative and quantitative
investigations of correlations among the variables are
possible. The so-called PCA (principal component analysis)
method offers convenient tools for modeling and over-
viewing the correlation structure of a multivariate data set.
It is used for searching trends, dominating variables,
groups and outliers among the data. Another projection
method, so-called PLS (partial least squares projections to

latent structures) analysis, is used to look for relationships
among two types of variables, i.e. x and y variables, such
that the value(s) of y variable(s) may be predicted by means
of x variables. Moreover, an extension of the PLS method,
i.e. discriminant analysis (PLS-DA), provides us with a
means to clarify whether the data set consists of subgroups,
and how such subgroups would differ in respect to each
other. Up to date the potentials provided by multivariate
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data analysis techniques have been most intensively utilized
in areas such as pharmacology, meteorology, environmen-
tal studies, economics, etc., whereas examples related to
materials science problems are rare yet [2–6]. The first
relevant example of the applicability of multivariate
analysis methods as a tool to study crystal-structure–
physical-property relations of functional perovskite-de-
rived oxide materials concerned high-Tc superconductive
copper oxides [2].

In the present study we utilize multivariate data analysis
methods in examining the various relationships among the
crystallographic fine structure and the magnetic properties
of manganese-based perovskites, AMnO3. Samples selected
for the study are either antiferromagnets or ferromagnets.
Moreover, some of them also show—depending on the
choice of the A-site cation constituent(s)—other interesting
properties including the colossal magnetoresistance effect,
half-metallic state, spin/charge ordering phenomenon,
insulator–metal transition, etc.

2. Experimental details

2.1. Data set

The crystal-structure and magnetic-property data used in
the present analysis were adopted from neutron diffraction
studies published for oxygen-stoichiometric AMnO3

perovskites with different A-site cation compositions
(as listed in Table 1). The data set consists of 131
samples ( ¼ observations) in total, i.e. NTOT ¼ 131. Each
sample selected for the analysis exhibits either an anti-
ferromagnetic (AFM)–paramagnetic transition (Class-1;
NAFM ¼ 76) or a ferromagnetic (FM)–paramagnetic tran-
sition (Class-2; NFM ¼ 55). The two compound classes
were first analyzed separately. In both cases, the magnetic
transition temperature, i.e. Néel temperature (TN) for
Class-1 and Curie temperature (TC) for Class-2, was
selected for the y parameter. As for the x parameters, each
sample was described by altogether 21 crystal-structure or
crystal-chemical (CS/CC) parameters ( ¼ variables), in-
cluding lattice parameters and unit-cell volume, Mn–O
bond lengths and Mn–O–Mn bond angles (see Fig. 1 for
the definitions), average valence and average ionic radius of
the A-site cation(s), plus other parameters that are
calculated from the ionic radii, bond lengths and bond
angles and believed to describe/quantify the degree of
lattice distortion, the band width and the valence state of
manganese. Majority of the samples included in the study
are of an orthorhombically distorted perovskite structure
(with four AMnO3 formula units per unit cell). However,
some of the samples were originally described within a
tetragonal, rhombohedral or cubic unit cell. Here all the
structure data were converted prior to the analysis to an
orthorhombic description of one perovskite unit in regards
to the lattice parameters and unit-cell volume. Values for
ionic radii were taken from Refs. [52,53] (at 6-coordination
for Mn and 12-coordination for cation A). Detailed
descriptions of the parameters utilized as x variables are
given in Table 2. Here it should be noted that even though
multivariate analysis can in general handle ‘‘missing data’’,
our data tables [with 76� (21+1) inputs in the case of
Class-1 and 55� (21+1) inputs in the case of Class-2] were
completely filled.

2.2. Multivariate analyses

The multivariate data analyses were carried out using
SIMCA-P 9.0 software (Umetrics, Sweden). For the PCA
[1], the data are arranged in a matrix of N observations (76
for Class-1 and 55 for Class-2) and 21+1 variables, and
accordingly the data set can be imagined such that each
observation gives a point in a 22-dimensional space. In
PCA, the data are first normalized (that corresponds to
giving each variable the same initial importance in the
analysis) and centralized. Then the information dimension-
ality is reduced (on the basis of the least squares sense) by
transforming the data into so-called principal components

(PCs) that are linear combinations of the initial variables.
The first PC is the line that best approximates the group of
data points. The second PC must be orthogonal to the first
PC and it is selected such that it improves the first
approximation of the data to the maximum extent. The
third PC is orthogonal to both the previous PCs and
improves the approximation further, and so forth. Typi-
cally two or three PCs are enough to sufficiently model the
variation in the data set. The result of the analysis is then
visualized by plotting the plane defined by the first two PCs
together with all the points projected onto the plane. The
projection points on the plane are called scores (t) and the
projection itself as a score plot (t[1]/t[2]). The score plot
provides us with a kind of map to inspect how the
observations relate to each other. To interpret the score
plot further, another plot with loading vectors (p) is
constructed as well. From the loading plot (p[1]/p[2]), it
can be qualitatively read how each variable contributes to
the model; accordingly it may serve as a guide for new-
material engineering.
In the PLS analysis [1], the data are arranged into two

matrices: the X matrix consists of the x variables (here the
CS/CC parameters) and the Y matrix of the y variable(s)
(here the value of TN or TC). In a PLS analysis in general
relationships between the x and y variables are searched for
such that the values of y variables may be predicted by
means of x variables. Here we aim at finding the
importance of each x variable on the selected y, i.e. the
value of TN or TC. For the two matrices coordinate systems
are formed, with as many dimensions as the number of
variables. After the pretreatment steps, i.e. scaling and
centering, PLS components that are linear combinations of
the original variables are calculated like in the PCA
method. The first PLS component describes the largest
amount of variance, then each new one—orthogonal to the
previous ones—accounts for the left-over variance maxi-
mally. From the PLS analysis, obtained is—besides the
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Table 1

List of observations used in this study: 76AFM samples (c1), 55FM samples (c2)

Observations

1 c1 LaMnO3 [7] 45 c1 Tb0.67Ca0.33MnO3 [26] 90 c2 La0.5Pr0.5MnO3 [12]

2 c1 La0.65Ca0.35MnO3 [8] 46 c1 Tb0.5Ca0.5MnO3 [27] 91 c2 La0.5Sr0.5MnO3 [41]

3 c1 La0.4Sr0.6MnO3 [9] 47 c1 Tb0.45Ca0.55MnO3 [27] (hydrothermal synthesis)

4 c1 La0.33Ca0.67MnO3 [10] 48 c1 Tb0.4Ca0.6MnO3 [27] 92 c2 La0.5Sr0.5MnO3 [9]

5 c1 La0.3Sr0.7MnO3 [9] 49 c1 Tb0.35Ca0.65MnO3 [27] (solid state synthesis)

6 c1 La0.25Nd0.25Ca0.5MnO3 [11] 50 c1 Tb0.33Ca0.67MnO3 [27] 93 c2 La0.5Sr0.4Ba0.1MnO3 [42]

7 c1 La0.2Pr0.8MnO3 [12] 51 c1 Tb0.25Ca0.75MnO3 [27] 94 c2 La0.5Sr0.2Ba0.3MnO3 [43]

8 c1 La0.2Sr0.8MnO3 [9] 52 c1 Tb0.2Ca0.8MnO3 [27] 95 c2 La0.5Sr0.1Ba0.4MnO3 [43]

9 c1 La0.1Sr0.9MnO3 [9] 53 c1 Tb0.15Ca0.85MnO3 [27] 96 c2 La0.5Ba0.5MnO3 [43]

10 c1 PrMnO3 [13] 54 c1 HoMnO3 [28] 97 c2 La0.45Sr0.55MnO3 [9]

11 c1 Pr0.975Na0.025MnO3 [14] 55 c1 Ho0.5Sr0.5MnO3 [29] 98 c2 La0.4Pr0.6MnO3 [12]

12 c1 Pr0.95Na0.05MnO3 [14] 56 c1 ErMnO3 [30] 99 c2 La0.18Pr0.72Na0.1MnO3 [44]

13 c1 Pr0.95K0.05MnO3 [14] 57 c1 YbMnO3 [31] 100 c2 Pr0.925Na0.075MnO3 [14]

14 c1 Pr0.9Sr0.1MnO3 [14] 58 c1 LuMnO3 [32] 101 c2 Pr0.9Ca0.1MnO3 [14]

15 c1 Pr0.8Na0.2MnO3 [15] 59 c1 YMnO3 [30] 102 c2 Pr0.9Ba0.1MnO3 [14]

16 c1 Pr0.75Na0.25MnO3 [16] 60 c1 Y0.5Ca0.5MnO3 [33] 103 c2 Pr0.9K0.1MnO3 [14]

17 c1 Pr0.7Ca0.3MnO3 [17] 61 c1 SrMnO3 [34] 104 c2 Pr0.85K0.15MnO3 [45]

18 c1 Pr0.6Ca0.4MnO3 [17] 62 c1 Sr0.9Ca0.1MnO3 [34] 105 c2 Pr0.8Ba0.2MnO3 [14]

19 c1 Pr0.5Ca0.5MnO3 [18] 63 c1 Sr0.8Ca0.2MnO3 [34] 106 c2 Pr0.7Sr0.3MnO3 [46]

20 c1 Pr0.5Ca0.09Sr0.41MnO3 [18] 64 c1 Sr0.7Ca0.3MnO3 [34] 107 c2 Pr0.63Sm0.07Sr0.3MnO3 [46]

21 c1 Pr0.44Sr0.56MnO3 [19] 65 c1 Sr0.6Ca0.4MnO3 [34] 108 c2 Pr0.63Bi0.07Sr0.3MnO3 [46]

22 c1 Pr0.44Sr0.56MnO3 [19] 66 c1 Sr0.5Ca0.5MnO3 [34] 109 c2 Pr0.5Sr0.5MnO3 [20]

(1.9GPa) 67 c1 Sr0.4Ca0.6MnO3 [34] 110 c2 Pr0.5Sr0.5MnO3 [19]

23 c1 Pr0.4Ca0.6MnO3 [17] 68 c1 Sr0.3Ca0.7MnO3 [34] (1.9GPa)

24 c1 Pr0.4Sr0.6MnO3 [20] 69 c1 Sr0.2Ca0.8MnO3 [34] 111 c2 Pr0.5Sr0.46Ca0.04MnO3 [47]

25 c1 Pr0.3Ca0.7MnO3 [17] 70 c1 Sr0.1Ca0.9MnO3 [34] 112 c2 Pr0.5Sr0.45Ba0.05MnO3 [48]

26 c1 Pr0.3Sr0.7MnO3 [20] 71 c1 Sr0.9Ba0.1MnO3 [34] 113 c2 Pr0.5Sr0.41Ca0.09MnO3 [47]

27 c1 Pr0.2Ca0.8MnO3 [17] 72 c1 Sr0.8Ba0.2MnO3 [34] 114 c2 Pr0.5Sr0.38Ca0.12MnO3 [47]

28 c1 Pr0.15Sr0.85MnO3 [21] 73 c1 CaMnO3 [34] 115 c2 Pr0.5Sr0.3Ca0.2MnO3 [47]

29 c1 Pr0.1Ca0.9MnO3 [17] 74 c1 Ca0.975Ce0.025MnO3 [35] 116 c2 Pr0.5Sr0.3Ba0.2MnO3 [42]

30 c1 Pr0.1Sr0.9MnO3 [22] 75 c1 Ca0.95Ce0.05MnO3 [35] 117 c2 Pr0.5Sr0.2Ba0.3MnO3 [48]

31 c1 NdMnO3 [23] 76 c1 Ca0.925Ce0.075MnO3 [35] 118 c2 Pr0.5Sr0.1Ba0.4MnO3 [48]

32 c1 Nd0.5Ca0.5MnO3 [11] 77 c2 La0.9Pr0.1MnO3 [12] 119 c2 Pr0.5Ba0.5MnO3 [48]

33 c1 Nd0.45Sr0.55MnO3 [24] 78 c2 La0.9Ba0.1MnO3 [36] 120 c2 Pr0.46Sr0.54MnO3 [20]

34 c1 Nd0.4Sr0.6MnO3 [24] 79 c2 La0.86Ba0.14MnO3 [36] 121 c2 Pr0.3La0.2Sr0.5MnO3 [42]

35 c1 Nd0.37Sr0.63MnO3 [24] 80 c2 La0.85Ca0.15MnO3 [37] 122 c2 Sm0.5Sr0.5MnO3 [11]

36 c1 Nd0.3Sr0.7MnO3 [24] 81 c2 La0.825Ca0.175MnO3 [37] 123 c2 Sm0.6Sr0.4MnO3 [49]

37 c1 Nd0.33Sr0.67MnO3 [24] 82 c2 La0.8Pr0.2MnO3 [12] 124 c2 Nd0.7Ba0.3MnO3 [50]

38 c1 Nd0.25Sr0.75MnO3 [24] 83 c2 La0.75Ca0.25MnO3 [38] 125 c2 Nd0.7Ba0.1Sr0.2MnO3 [50]

39 c1 Sm0.5Ca0.5MnO3 [11] 84 c2 La0.7Sr0.3MnO3 [38] 126 c2 Nd0.7Ba0.2Sr0.1MnO3 [50]

40 c1 Sm0.2Ca0.8MnO3 [25] 85 c2 La0.7Ba0.3MnO3 [38] 127 c2 Nd0.7Ba0.25Sr0.05MnO3 [50]

41 c1 Sm0.15Ca0.85MnO3 [21] 86 c2 La0.55Sr0.45MnO3 [9] 128 c2 Nd0.51Sr0.49MnO3 [24]

42 c1 Sm0.1Ca0.9MnO3 [22] 87 c2 La0.525Pr0.175Ca0.3MnO3 [38] 129 c2 Nd0.5Sr0.5MnO3 [11]

43 c1 153EuMnO3 [23] 88 c2 La0.52Y0.15Ca0.33MnO3 [39] 130 c2 Nd0.49Sr0.51MnO3 [24]

44 c1 TbMnO3 [26] 89 c2 La0.5Ca0.5MnO3 [40] 131 c2 Bi0.25La0.25Ca0.5MnO3 [51]
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observed-versus-predicted plot for each y variable (here TN

or TC)—a so-called coefficient diagram from which the
contribution (positive or negative) for the specific y

variable is quantitatively seen.
Finally, PLS-DA [1] was performed to examine how the

two compound classes, i.e. the AFM compounds (Class-1)
and the FM compounds (Class-2), differ from each other,
and to understand which CS/CC parameter(s) most
strongly contribute in making the two classes of com-
pounds different. In PLS-DA the X matrix consists of the
same 21+1 x variables as in PCA and PLS, whereas the
class identity information is carried in the Y matrix which
consists of so-called dummy variables, being just artificially
generated combinations of ones and zeros (e.g. 1 0 for
Class-1 compounds and 0 1 for Class-2 compounds). PLS
is then performed to relate the two matrices, X and Y. As
an outcome of PLS-DA, we obtain a coefficient diagram,
which reveals the discriminatory power of each x variable.
The results of the aforementioned projection analyses

are evaluated on the bases of two goodness-of-fit para-
meters: R2 describes how much of the variation is explained
by the model, while Q2 describes the predictive power of
the model. For a reasonable model Q2 values larger than
0.5 are expected. Another criterion is that the R2 and the
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Q2 values should not deviate too much. In the PLS
analyses, R2 is calculated separately for the X and Y

matrices, i.e. R2X and R2Y.
3. Results and discussion

3.1. Class-1 (AFM AMnO3 compounds)

Data analysis was started by performing PCA for the
AFM compounds of Class-1 (NAFM ¼ 76). Calculation of
O(ap)

A

Mn

a

b

c

alpha

beta

O(eq)

Fig. 1. Definitions of the crystal-structure parameters used in the present

analyses.

Table 2

List of original variables and their explanations/definitions

Variable Explanation

a, b, c Lattice parameters per perovskite unit

Vol Volume per perovskite unit

r(A) Average ionic radius at the A-site

V(A) Average valence of A cations

Mn�OðapÞ

Mn�OðeqÞl

Mn�OðeqÞs

9>=
>;

Different Mn–O bond lengths (l: longer, s: shorter)

/Mn–OS Average Mn–O bond length

Alpha Mn–O(ap)—Mn bond angle

Beta Mn–O(eq)—Mn bond angle

/Mn–O–MnS Average Mn–O–Mn bond angle

TF Tolerance factor

(1�TF)2 Deviation of tolerance factor from unity

Sigma2 A-site cationic size mismatch

BVS(Mn) Valence of Mn estimated from bond-valence-sum calcul

JT Jahn–Teller parameter

Delta MnO6-octahedron distortion parameter

Epsilon Average apical compression

W Bandwidth-related parameter
three PCs resulted in a goodness-of-fit parameters of
R2
¼ 0.903 and Q2

¼ 0.861. In Figs. 2(a) and (b) the
obtained score and loading plots, respectively, are dis-
played. From Fig. 2(a) it is concluded that all the 76
samples are located either inside or in the very vicinity of
the ellipse that defines the boundary of the 95% confidence
region of the model; in other words, no outliers are
detected in the data set. Also concluded is that the samples
do not form obvious clusters inside the ellipse. At the same
time, overall inspection of the loading plot of Fig. 2(b)
reveals that all the 22 variables (i.e. the 21 CS/CC
parameters plus the TN value) included in the model are
important as all of them are located relatively far from the
origin of the plot. Further interpretation of the loading plot
reveals that, for instance, the Mn–O–Mn bond angles
[alpha, beta and /Mn–O–MnS] and the average A-site
cation radius [r(A)] are situated close to each other and also
close to the magnetic transition temperature (TN), indicat-
ing that strong positive correlations exist among them. In
other words, an increase in r(A) results in a less-tilted
MnO6 octahedron network, which in turn should be
beneficial for the super-exchange-mediated AFM interac-
tions based on 1801 cation–anion–cation interactions [54].
On the other hand, the structural distortion parameters, i.e.
Jahn–Teller distortion (JT), MnO6-octahedron distortion
(delta), average apical compression (epsilon) and deviation
of the tolerance factor from unity [(1�TF)2], are all found
farthest from TN in Fig. 2(b). This means that these
parameters correlate negatively with TN, being in line with
the principles of the super-exchange mechanism and the
fact that the less efficient overlap of Mn and O orbitals
weakens the AFM coupling. In other words, once the
deformation of the MnO6 octahedron diminishes such that
Definition

Vol � a� b� c

TF � ðrA þ rOÞ=
ffiffiffi
2
p
ðrMn þ rOÞ

ð1� TFÞ2 � ð1� TFÞ2

sigma2 � s2 ¼
P

iyir
2
i � hrAi

2

ation

JT �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=3
P

i½ðMn�OiÞ � hMn�Oi�2
q

delta � D ¼ 1=N
P

n½ðMn�OÞn � hMn�Oi=hMn�Oi�2

epsilon � � ¼ jhMn�OðeqÞi=Mn�OðapÞ � 1j

W � coso=hMn�Oi3:5, where o ¼ 1=2ðp� hMn�O�MniÞ
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the crystal structure approaches the ideal perovskite
structure strong AFM coupling with a high TN value is
realized, which is in a straightforward manner revealed
from the present PCA results.

To model the relation between the CS/CC parameters
and the value of TN, PLS was performed by two PCs
(R2X ¼ 0.809, R2Y ¼ 0.786 and Q2

¼ 0.771). As in the case
of PCA, no outliers were diagnosed as all the observations
were found within the ellipse of 95% confidence (not
shown here). The PLS coefficient diagram is given in Fig. 3.
Such a diagram reveals the distinct impact (positive or
negative) of each crystal-chemical parameter on TN. As
expected on the bases of PCA, the Mn–O–Mn bond angles
(alpha, beta and /Mn–O–MnS) present strong positive
influence on TN, whereas the structural distortion para-
meters (JT, delta, epsilon and (1�TF)2) exhibit negative
(and somewhat weaker) impacts on TN. Lattice parameter
b is also shown to have a strong positive impact on TN (see
Fig. 3). We attribute this to the fact that bond lengths in
general fluctuate less than the lattice parameters. Then with
increasing b, alpha also increases as the position of O(ap)
changes, i.e. there is a strong positive correlation between b

and alpha. Hence, we may conclude that to design an
AMnO3 perovskite with a high TN value, we should aim at
a less-tilted MnO6 octahedron. Finally, the observed-
versus-predicted TN is shown in Fig. 4. All the samples
fall in a satisfactory manner on the diagonal, confir-
ming that our model is valid. Hence, we conclude that for
the AFM AMnO3 compounds we have been able to
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satisfactorily model the relationships between CS/CC
parameters and TN by means of the employed multivariate
data analysis techniques.
3.2. Class-2 (FM AMnO3 compounds)

We performed PCA for the Class-2 FM compounds
(NFM ¼ 55) in a way parallel to that for the AFM
compounds of Class-1. The results are shown in
Figs. 5(a) and (b). PCA with four PCs ended up with the
goodness-of-fit parameters of R2

¼ 0.873 and Q2
¼ 0.712.

The various relationships among the magnetic transition
temperature (TC) and the CS/CC parameters resemble
those seen for the Class-1 compounds. Especially, in the
loading plot for Class-2 (Fig. 5(b)), the various parameters
are found roughly about the same positions as in the case
of Class-1 compounds, reflecting the fact that a less-tilted
MnO6 network also results in a higher TC among the FM
AMnO3 compounds. However, for Class-2 no clear
grouping among the variables is seen (at least to the same
-6
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Fig. 5. PCA (a) score and (b) loading plots for the FM AMnO3

compounds of Class-2.
extend as for Class-1), indicating that correlation between
the TC value and the CS/CC parameters is rather weak.
This is in accordance with our empirical knowledge that
the crystal structure becomes more symmetric because of
the weakening or disappearance of the Jahn–Teller effect
when ferromagnetism is induced through doping (i.e.
divalent-for-trivalent A-site cation substitution) in the
parent AFM Jahn–Teller-active AMnO3 lattice. In Fig. 6,
individual R2 and Q2 values are shown for each of the 22
variables used in the PCA modeling, both for the Class-1
and the Class-2 compounds. For Class-1, most of the
variables are well described by the PCA model (Fig. 6 (a)),
whereas for Class-2 large differences between the R2 and
Q2 values are seen for some of the variables (e.g. sigma2, a,
b, c, Mn–O(ap), Mn–O(eq)s, T, epsilon) (Fig. 6 (b)). These
variables, except for sigma2 and TC, are related to the
shape of the MnO6 octahedron.
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coefficients diagram to show the importance of the 21 x variables used in

the analysis to discriminate the FM AMnO3 compounds (Class-2) from

those of AFM AMnO3 compounds (Class-1).
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Somewhat similar difficulties were encountered when the
PLS analysis was attempted for Class-2. It was not possible
to model the structure–property relationships in a satisfac-
tory manner: the obtained Q2 value was smaller than 0.5,
which has been regarded as the lowest limit for good
prediction power in PLS. The result is a supporting
argument for the weak structure–property relations in
FM AMnO3 compounds. However, we should also
consider the raw data set. Ferromagnetism among the
perovskite manganese oxides is rather rare, appearing only
in a narrow composition area. Hence our data set for
Class-2 consists of 55 samples that are very similar to each
other in terms of CS/CC parameters. For such a system,
multivariate data analysis may not work efficiently/
properly.

3.3. Discrimination between FM and AFM AMnO3

compounds

Even though it was not possible to properly model the
TC on the bases of CS/CC parameters for the FM
manganese-oxide perovskites, we wanted to see how
different the FM AMnO3 compounds are from the AFM
AMnO3 compounds and to find (if possible) some clues for
the most influential/characteristic CS/CC parameters that
differentiate the two classes of compounds from each
other. Hence the class discriminating characteristics were
searched for by means of PLS-DA carried out for the entire
data set of all the 131 samples (NTOT ¼ 131) with the 21
CS/CC parameters as x variables. Calculation of three PCs
yielded the goodness-of-fit parameters as: R2X ¼ 0.891,
R2Y ¼ 0.526 and Q2

¼ 0.507. Fig. 7(a) displays the score
plot to demonstrate that the two classes are clearly
separated from each other. Quantitative measures for the
discriminatory power of each individual x variable are
seen from the PLS-DA coefficient diagram presented in
Fig. 7(b). From Fig. 7(b) revealed is that the parameters, c,
Mn–O(eq)s and Mn–O(ap) (i.e. decreased distortion of
MnO6 octahedron), have the strongest positive contribu-
tion to the identity of Class-2 FM compounds, while
epsilon, JT, TF and delta (i.e. increased distortion of MnO6

octahedron) contribute most strongly to the identity of
Class-1 AFM compounds. This agrees with our empirical
belief that the Class-2 FM compounds are more isotropic
than the Class-1 AFM compounds (regarding the MnO6

octahedron). Also seen in Fig. 7(b) is that both sigma2 and
V(A) have a positive impact on the appearance of FM in
manganese-oxide perovskites. This is natural since FM
emerges in the AMnO3 system only (in a narrow
compositional range) when the AMnO3 phase is doped to
contain mixed-valent MnIII/IV through partial divalent-for-
trivalent cation substitution at the A site, whereas AFM is
found both in the non-doped AIIIMnIIIO3/A

IIMnIVO3 and
doped AII/IIIMnIII/IVO3 compounds. Hence the critical
point for stabilizing the rare FM state in the AMnO3

system is how we would be able to diminish the distortion
of the MnO6 octahedron in the required range of doping,
i.e. at the proper V(A) value. One of the tickets for this as
proposed by the present analysis is to elongate the crystal
along z-axis to elongate c and Mn–O(eq)s [or to elongate b

and Mn–O(ap)], but not to increase epsilon (Fig. 7(b)).

4. Conclusion

The present pioneering work has demonstrated that
multivariate data analysis techniques (PCA, PLS and PLS-
DA) are potentially useful for understanding the struc-
ture–property relationships in perovskite manganese oxi-
des. The target group of compounds consisted of 131
samples of oxygen-stoichiometric AMnO3 perovskites
(either AFM or FM) with different A-site cation composi-
tions. For the AFM compounds, the structure–property
relations were successfully modeled so as to be able to
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predict the value of TN on the bases of crystal-structure/
crystal-chemical parameters only and to elucidate con-
tributions of the individual parameters. In contrast, for the
FM compounds parallel treatment did not produce usable
results presumably due to weaker structure-property
relations (compared to the AFM compounds) and/or the
narrowness of the FM region (in terms of chemical
composition) in the magnetic phase diagram of the AMnO3

system. On the other hand, discrimination analysis was
successfully employed to demonstrate that the FM AMnO3

compounds are clearly different from the AFM AMnO3

compounds in their crystal-structure/crystal-chemistry fine-
features. As revealed from the present multivariate
analysis, the most important prerequisite for the FM state
to appear in the AMnO3 system is that (besides creating the
proper mixed-valence state for Mn) one should be able to
shape the MnO6 octahedron isotropic enough.
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Magn. Mater. 53 (1985) 153.
[18] Z. Jirák, F. Damay, M. Hervieu, C. Martin, B. Raveau, G. André,
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Raveau, G. André, F. Bourée, Chem. Mater. 16 (2004) 1104.

[21] C. Martin, A. Maignan, M. Hervieu, B. Raveau, Z. Jirák,

A. Kurbakov, V. Trounov, G. André, F. Bourée, J. Magn. Magn.
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